
Mathematics and Computer Science DivisionArgonne National Laboratory
A

R
G

O
N

NE

NATIONAL LABORA
TO

R
Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

PREPRINT MCS-P356-0393The Design of Data-structure-neutralLibraries for the Iterative Solution ofSparse Linear SystemsbyWilliam D. Gropp and Barry Smith
March 1993

THE DESIGN OF DATA-STRUCTURE-NEUTRALLIBRARIES FOR THE ITERATIVE SOLUTIONOF SPARSE LINEAR SYSTEMSBARRY F. SMITH � WILLIAM D. GROPPyAbstractOver the past few years several proposals have been made for the standard-ization of sparse matrix storage formats in order to allow for the development ofportable matrix libraries for the iterative solution of linear systems. We feel thatthis is the wrong approach. Rather than de�ne one standard (or a small num-ber of standards) for matrix storage, the community should de�ne an interface(i.e., the calling sequences) for the functions that act on the data. In addition,we cannot ignore the interface to the vector operations since, in many applica-tions, vectors may not be stored as consecutive elements in memory. With theacceptance of shared-memory, distributed-memory, and cluster-memory paral-lel machines, the
exibility of the distribution of the elements of vectors is alsoextremely important.Key words. Krylov space methods, software libraries, sparse linear systemsAMS(MOS) subject classi�cations. 65F10, 65F50, 68N051 IntroductionIn the 1970s two extremely successful numerical linear algebra software packages,EISPACK and LINPACK, were introduced. They were designed for portability, gen-erality, numerical robustness, and e�ciency. They were, however, restricted to denseand banded matrices. The development of serial numerical linear algebra software fordense and banded matrices is greatly simpli�ed by the fact that there are very fewnatural ways of storing the matrices. Thus very little e�ort is needed in designing thedata structures used in the codes.For sparse linear algebra, even on sequential machines, the issues become muchmore complicated. When one includes various parallel machines, the problems multi-ply even further. Not only must one make decisions about the storage of the sparse�Department of Mathematics, University of California, Los Angeles, CA 90025-1555. Electronicmail address: bsmith@math.ucla.edu . This work was supported in part by the AppliedMathematicalSciences subprogram of the O�ce of Energy Research, U.S. Department of Energy, under ContractW-31-109-Eng-38 while the author was at the Argonne National Laboratory, and by the O�ce ofNaval Research under contract ONR N00014-90-J-1695.yArgonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844. Electronic mailaddress: gropp@mcs.anl.gov . This work was supported by the O�ce of Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38.1

matrices, one must also decide on storage formats for the vectors, since each vec-tor is probably distributed across the parallel processors. We also note that even onsequential machines, the natural storage format for a vector should be dictated bythe application. For instance, an adaptive mesh re�nement code may represent thesolution and other vectors with an octtree data structure.Software methodologies to overcome these problems do exist; they involve datahiding and object-oriented programming techniques. In object-oriented programmingone abstracts out of a data type the actions that one wishes to perform on the data,independent of the underlying representation of the data. So, for instance, in theiterative solution of linear systems one needs to be able to multiply vectors by sparsematrices and their transposes. In addition, one must be able to perform scalings ofvectors, calculate sums of vectors, etc. These operations, not the particular represen-tation of the matrices and vectors, are what de�ne the data. Thus any storage format,with the corresponding operations de�ned, should be immediately supported by thesoftware library.To someone used to programming in Fortran 77, this may sound like a pipedream. It is actually relatively easily achieved in some programming languages. Inthis paper we describe an implementation using C, since many people are familiarwith this language and it is portable and available on virtually all machines. Also, itis fairly easy to mix Fortran 77 and C code in a single application on most platforms.Note that some people use the term object-oriented to refer to specifying a datatype, operations on that data type, and all of the details of the internal formats (forexample, the sparse matrix format to use). We are using object-oriented in a strongerand purer sense: only the operations are speci�ed. The choice of internal format (andhence, the choice of the actual code to implement the operations) is determined onlyat run time rather than at compile time. This is an important di�erence; it changesobject-oriented from being simply a way to organize a code and the argument lists ofthe routines to a method for
exibly adapting to di�erent situations.2 Programmer De�ned Data TypesIn Fortran 77 a limited number of data types are built into the language, essentiallyscalar integer and
oating-point numbers, and dense arrays of integer and
oating-point numbers. The language contains no mechanism for the programmer to constructadditional data types. Hence, when dealing with higher-level objects such as sparsematrices, the programmer must choose a particular storage format, which, in general,will involve several separate array variables. All of these array variables must bepassed to the routines that operate on the sparse matrices.To explain this more fully, we give a particular example, the well-known YaleSparse Matrix Package (YSMP) storage scheme [2]. In YSMP the sparse matrix isstored by using four variables: n, the size of the matrix; a, an array of
oating-pointnumbers that contain the nonzero entries in the matrix; ia, an array of integers thatcontain the locations in a of the beginning of each new row; and ja, which containsthe column number of each entry in a. A variation of this storage format is to storethe diagonal entries separately in another array, d.If one desired to write a general-purpose iterative solver routine that used theYSMP storage pattern, it could have a calling sequence like CG(n, a, ia, ja, ...).But if one desired to support both storage formats, one would need something likeCG(n, a, ia, ja, d, flag, ...), where the value of
ag indicates which of the2

two formats is being used. This increases the complexity of the code and makes theaddition of a new storage format di�cult: it may require not only rewriting the CG()code, but also modifying all of the application codes, since the calling sequence of theCG() code has been changed.Other programming languages such as C, C++, and Fortran 90 provide a betterand more
exible alternative. The programmer is free to introduce new data types,called structures in C, classes in C++, and derived data types in Fortran 90. Onefeature that is useful about these new data types is that pointers to the data maybe passed into a routine without the routine needing to know what information theycontain and how it is stored. In this way the CG() routine need not know the storageformat of the matrix; only the matrix-multiply routine needs to know it. So, forinstance, one may introduce a new data type, SparseMatrix, then write conjugategradient routines like the following that will support any matrix storage format.void MatrixMultiply(SparseMatrix *, Vector *, Vector *);void CG(void *matrix, ...){ ...MatrixMultiply(matrix, x, y);...}For those not familiar with C's void type, this simply means that the data type is un-speci�ed. If the sparse matrix storage format is changed, only the MatrixMultiply()routine must be changed, not the CG() routine. In fact, we can do even better thanthis. Rather than hardwiring into the CG() code the matrix-multiply routine, we canpass a pointer to the matrix multiply routine into the CG() routine.3 Our ApproachSince we would like to support a variety of Krylov-based solvers, we must �rst deter-mine which vector operations these require. Some of these are the standard BLAS 1operations. Others include routines to generate and free vectors that are needed fortemporary or permanent workspace. Since it would be cumbersome to individuallypass pointers to all of these routines into the solver routines, we bundle up all of thefunction pointers and any additional data needed for a particular implementation intoa single data type, called a vector context, VectorContext. In Fig. 1 we give a partof our C structure that de�nes the VectorContext. All higher-level routines thatrequire access to the vectors act on the vectors only through the vector context, notby directly manipulating the data.All of the vector routines take, as their �rst argument, a pointer to a private,implementation-dependent data structure that may contain the vector length, layout,etc. For a standard serial vector implementation this can simply be a pointer to aninteger containing the length of the vector. For a simple parallel implementation itmay be a pointer to two integers, the �rst containing the length of the part of thevector stored in local memory, the second the length of the entire vector. A sampleserial implementation of the dot() routine is given in Fig. 2. Associated with eachvector operation is a macro to simplify its use; for instance, to use the vector dot()operation one may use VDOT(vp, N, x, y, result).3

typedef struct {void *(*create_vector)(), /* Routine returns a single vector */(*destroy_vector)(), /* Free a single vector */(*dot)(), /* z = x^H * y */(*scale)(), /* x = alpha * x */(*axpy)(), /* y = y + alpha * x */.....} VectorContext; Figure 1: The Vector Contextvoid DVdot(int *N, double *x, double *y, double *result){ int i, n = *N; double sum = 0.0;for (i=0; i<n; i++) { sum += x[i] * y[i]; } *result = sum;} Figure 2: A Sample Dot ProductCurrently, our vector structure provides the operations from the Level 1 BLAS,plus the operations y x + �y and w �x + y, along with operations to createand free storage for vectors. In Table 1 we list the minimal vector operations we feelmust be de�ned. Note that the �rst argument is de�ned to be a pointer to void. Thepointers to Scalar or Vector are also unspeci�ed; the indication Scalar or Vectoris there simply to allow type checking of arguments for those languages that supportit. These calling sequences will allow the same codes to be used with single precision,double precision, complex, multiple precision, interval arithmetic, etc.Sparse matrix operations may be stored similarly; in addition to the obvious oper-ations such as matrix-vector product and triangular solve, we include such operationsas insert and extract row and compute incomplete factorizations. Sparse matriceshave a similar table, which, to keep this article short, will not be displayed here.An important feature of the data-hiding approach is that additional operationscan be added without disturbing existing code. For example, the operation w �x+ywas added when it became apparent that several Krylov methods could make gooduse of it. The previously coded Krylov space methods did not require any changes.If these routines were passed through argument lists (the only portable mechanismavailable for Fortran 77 programmers), adding a routine would require modifying eachargument list for every routine that used these vector routines.The only technique available to Fortran programmers that approximates this
exibility is \reverse communication." In this method, for each operation, the libraryroutine sets a
ag and returns to the calling program with a request that an operationbe performed. However, this method puts the burden on the user, as well as requiringa rather unnatural style of programming.Since the various Krylov-based solvers have many optional arguments, we usea context data type, IterativeContext, to store this information as well as thelocation of the right-hand side, solution, etc. The IterativeContext has two parts, a4

Table 1: Vector OperationsName Description Calling Sequence (�rst argument is always void *N)Create a vectorDestroy a vector Vector *vObtain n vectors int nRelease n vectors int n, Vector **vDot z xH � y Vector *x, Vector *y, Scalar *zNorm z pxH � x Vector *x, Scalar *zMax z max(jxj) Vector *x, Scalar *z, int *idxScale x �x Scalar *�, Vector *xCopy y x Vector *x, Vector *ySet xi �, 8i Scalar *�, Vector *xAXPY y �x+ y Scalar *�, Vector *x, Vector *yAYPX y �y + x Scalar *�, Vector *x, Vector *ySwap swap x and y Vector *x, Vector *yWAXPY w �x+ y Scalar *�, Vector *x, Vector *y, Vector *wpublic part which is the same for all Krylov space methods, and a private part whichcontains particular options, workspace, etc., for each particular Krylov space method.The distinction between the two parts is invisible to the application programmer.The user may also provide optional routines to replace the default convergence testsand optional routines to print out or plot the solution, residual, error, etc., at eachiteration; these are stored in the IterativeContext, as well. The IterativeContextalso contains a VectorContext for use with operations on the vectors.In Fig. 3 we show an implementation of the inner loop of a preconditioned con-jugate gradient. This implementation is portable and works correctly on parallelcomputers regardless of the distribution of data (all of the di�culty is handled bythe speci�c choices of functions for the vector and matrix operations). In fact, it istaken from the version that we are currently using on both uniprocessors and parallelcomputers such as the Intel DELTA and BBN TC2000.In Fig. 4 we give a code fragment that will allow the solution of a linear systemusing the conjugate gradient method, GMRES, Bi-CG-stab, CGS, or two di�erentversions of transpose-free QMR. The �rst line currently con�gures the code for theGMRES method. The important point is that all of the di�erent methods have thesame calling sequences. Optional arguments are passed by calling additional routines,which are ignored if the option is not appropriate. In this way any of the methodsin the library may be used without changing the application code at all. In addi-tion, more Krylov space methods may be added to the library without a need for anychanges to the application codes. Of course, this
exibility is purchased at a price.Adding a method requires following the object-oriented approach. Further, the rou-tines amult() and binv() must be provided by the user, and they must also conformto the implementation, though normally a library would provide several default im-plementations. It has been our experience that the object-oriented design makes thisrelatively easy to achieve.In Fig. 5 we give the calling sequence for a conjugate gradient algorithm containedin working notes for a proposed sparse BLAS standard [1]. Within the constraints of5

for (k=0; k<maxit; k++) {VDOT(vp, N, r, z, &beta); /* beta <- r'z */c = beta/betaold; betaold = beta;VAYPX(vp,N,c,z,p);} /* p <- z + c* p */MULT(itp, N, p, z); /* z <- A*p */VDOT(vp, N, p, z, &a);a = beta/a; /* a <- beta/p'z */VAXPY(vp, N, a, p, u); /* u <- u + a*p */VAXPY(vp, N, -a, z, r); /* r <- r - a*z */VNORM(vp, N, r, &rnorm); /* rnorm <- ||r|| */if (CONVERGED(itp, N, rnorm, k)) break;PRE(itp, N, r, z); /* z <- B*r */}Figure 3: Sample Code for PCG Loop: vp is the vector context; itp is the iterativemethod context.Code prior to entering the loop (e.g., setting betaold) has been omitted.Fortran 77 (as a language in which to implement this routine), this is just about thebest that can be done. We contend that limiting the design of software to what canbe implemented in Fortran 77 (as opposed to used from Fortran 77) severely limitsthe
exibility and maintainability of the software.We also point out that our approach is not intended to duplicate the code in apackage such as SPARSKIT [5] but rather to provide an interface that is more
exibleand extensible. In fact, we can use carefully crafted implementations of operationsinvolving sparse matrices as the implementation of the operations that we support.4 RecommendationsSome readers may object that the object-oriented approach merely hides the fact thatone must still write the routines to perform the vector operations and the matrix-vectoroperations. To some degree this objection is correct. The power of the object-orientedapproach is that once the vector and matrix-vector routines are written, they need notbe touched, or even understood, to write a new Krylov-based solver that utilizes them.The converse is also true: one need never rewrite the Krylov-based solvers again whena new architecture comes along. As soon as the vector and matrix-vector operationsare provided, the Krylov-based solvers will automatically work on that machine|andas e�ciently as the underlying operators.As an example of the
exibility that this approach gives, we mention one of ourapplications, a magnetostatics code that solves a large, dense linear system in itsinner loop. We wished to use iterative methods instead of direct methods to solvethis problem. To do this, we simply introduced a new sparse matrix format called\dense." This format uses the same matrix storage that the application is using, anduses Level 2 BLAS for matrix-vector operations (thus providing good e�ciency). Wewere then able to use all of our iterative routines without change. The same approachwas used for the parallel version of this application.Another example is in the EAGLE code [4] for external two- and three-dimensional6

IterativeContext *itp; ITMETHOD itmethod = ITGMRES;Vector *x,*b; int its, n = 50;void amult(), binv();itp = ITCreate(itmethod); /* Choose the method */DVSetDefaultFunctions(itp->vc); /* set default vector functions */x = VCREATE(itp->vc, &n); /* generate space for solution and rhs */b = VCREATE(itp->vc, &n);VSET(itp->vc, &n, 1.0, b); /* set right hand side to ones */ITSetAmult(itp, amult); /* set routine for matrix multiply */ITSetBinv(itp, binv); /* set routine for preconditioner */ITSetSolution(itp, x);ITSetRhs(itp, b);ITSetUp(itp, &n); its = ITSolve(itp, &n); ITDestroy(itp, &n);Figure 4: Sample Code Using Krylov SolversSUBROUTINE CG(M,DESCRA,AR,IA1,IA2,INFORM,DESCRL,LR,IL1,IL2,DESCRU,* UR,IU1,IU2,DESCRAN,ARN,IAN1,IAN2,DESCRLN,LRN,ILN1,* ILN2,DESCRUN,URN,IUN1,IUN2,VDIAG,B,X,EPS,ITMAX,* ERR,ITER,IERROR,Q,R,S,W,P,PT1,IAUX,LIAUX,AUX,LAUX)Figure 5: Calling Sequence for a Conjugate Gradient Routine in Fortran 77
uid dynamics. In this code, a linear system must be solved within the inner loop.However, the matrix is represented implicitly as coe�cients on a grid. The conven-tional approach to interfacing this code to a solver package is to reformat the matrixinto some explicit representation, such as the YSMP format. With our package, wesimply added a new sparse matrix type, \Eagle," that is de�ned by the grid coe�cientsand a few operations. This simpli�ed the task of using our package in an existing ap-plication. Perhaps more important, it minimized the amount of additional memoryneeded, since we did not have to make a separate copy of the matrix elements.Both of these applications codes are written in Fortran 77, demonstrating thatthe advantages of true object-oriented design can be made available to Fortran users.We make the following recommendations for the design of truly data-structure-neutral libraries:1. Do not design the interface based on the limitations of the target language. Justbecause you cannot implement an interface in Fortran does not mean that youcannot provide that interface to Fortran programmers.2. Do not assume any particular format in the data structures. Do not assumethat vectors are contiguous in computer memory (this is not true even in manyserial applications codes).3. Design the interface so that routines that solve the same problem in di�erentways are perfectly interchangeable. This approach maximizes the upward com-patibility of solutions (new algorithms).7

4. Remember that data-structure-neutral does not mean that the format of thematrix is unspeci�ed; it means specifying vectors and matrices and other objectsby the operations that are performed on them in such a way that you can operateon them without knowing their internal structure.Developing the codes initially takes slightly longer than writing one-use, data-structure-dependent codes, but the payo� in code reuse more than compensates. Our codes thatuse these techniques are available via anonymous ftp from the site info.mcs.anl.govin the directory pub/pdetools. (We support only \double" as the Scalar, mostly forreasons of limited resources.) These routines are callable from both C and Fortran77. The linear solvers are part of a larger set of tools, PETSc (Portable, ExtensibleTools for Scienti�c computing) that we have been developing. We have written a setof linear solvers built on top of these libraries called the \Simpli�ed Linear EquationSolvers," SLES. Its user guide [3] is in the �le sles.ps.Z. SLES is intended as a easyto use, serial interface to the much more powerful underlying routines. We have foundthis approach to be very easy to use, and we use it both with our research codes andwith large computational science applications.References[1] I. S. Duff, M. Marrone, and G. Radicati, A proposal for user level sparseBLAS, Tech. Rep. TR/PA/92/85, CERFACS, 1992. SPARKER Working note #1.[2] S. C. Eisenstat, H. C. Elman, M. H. Schultz, and A. H. Sherman, The(new) Yale Sparse Matrix Package, Tech. Rep. YALE/DCS/RR-265, Departmentof Computer Science, Yale University, Apr. 1983.[3] W. D. Gropp and B. Smith, Simpli�ed linear equation solvers users manual,Tech. Rep. ANL-93/8, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Mar. 1993.[4] J. S. Mounts, D. M. Belk, and D. L. Whitfield, Program EAGLE user'smanual, volume IV: Multiblock implicit, steady-state Euler code, Tech. Rep. TR-88-117, Vol. IV, Air Force Armanent Laboratory (AFATL), Eglin Air Force Base,Florida, Sept. 1988.[5] Y. Saad, SPARSKIT: A basic toolkit for sparse matrix computations, Tech. Rep.1029, Center for Supercomputing Research and Development, University of Illinoisat Urbana-Champaign, Aug. 1990.The submitted manuscript has been authoredby a contractor of the U. S. Government undercontract No. W{31{109{ENG{38. Accordingly,the U. S. Government retains a nonexclusive,royalty-free license to publish or reproduce thepublished form of this contribution, or to allowothers to do so, for U. S. Government purposes.8

